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The optical properties of carbon nanotubes strongly depend on the polarization direction of the incident
light. The challenge of describing the optical properties analytically is mainly associated with the calculation of
dipole matrix elements. Although an analytic expression has been obtained for dipole matrix elements for light
polarized parallel to the nanotube axis no expression has been found so far for the perpendicular case. Based
on the structural symmetry we obtain an analytic expression for the electric-dipole matrix elements of single
wall carbon nanotubes with arbitrary chirality for linearly polarized light with polarization perpendicular to the
nanotube axis. This expression is used to calculate the short axis linear susceptibility semianalytically. Excel-
lent agreement with numerical calculations is demonstrated.
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I. INTRODUCTION

The optical properties of carbon nanotubes �CNs� have
been studied extensively both experimentally1–4 and
theoretically.5–15 Notably, the polarization-dependent optical
properties of these nanomaterials have been investigated in
many aspects and in different ranges of energy.2,6,13,16–18 Be-
cause of their nanometer-sized diameter and a micron-sized
length, CNs are quasi-one-dimensional systems. Due to their
one dimensionality, their optical response strongly depends
on the polarization direction of the incident light with respect
to the nanotube axis. Moreover, the polarization absorption
coefficient of CN fiber for electric field parallel and perpen-
dicular to the fiber axis have become experimentally
accessible.19–22 Therefore, a study of the polarization depen-
dence of the optical matrix elements is required. A few the-
oretical papers have investigated the optical properties of
CNs for light polarized parallel to the nanotube axis
analytically.12–15 However, for polarization perpendicular to
the axis no analytic calculation for CNs with arbitrary chiral-
ity has been done so far. In our previous work,12 we have
investigated the linear susceptibility of zigzag CNs for light
polarized both parallel and perpendicular to the nanotube
axis. We have managed to find closed form analytic expres-
sions for electric dipole matrix elements for polarization both
parallel and perpendicular to the nanotube axis. The optical
matrix elements of semiconducting CNs around the K �K��
points of the two-dimensional �2D� Brillouin zone have been
investigated analytically by Goupalov,13 who has studied the
dependence of the optical matrix elements on the nanotube
chirality and excitation energy as well as the allowed transi-
tions in each case of polarizations. However, a full form for
the calculation of the electric-dipole matrix elements has not
been obtained. Our calculations clearly show the selection
rules governing the transitions and moreover provide an ana-
lytic expression for the electric dipole matrix applicable to
all band to band transitions. Jiang and co-workers14 have
investigated the dipole matrix elements for light polarized
both parallel and perpendicular to the nanotube axis. They
have obtained an analytic expression for the parallel case for
CNs with arbitrary chirality and, moreover, derived an ex-

pression for the perpendicular case valid for armchair CNs
but only near the Fermi level. However, their method does
not exploit fully the structural symmetry of CNs as evi-
denced by the fact that different matrix elements are obtained
for allowed degenerate transitions. Hence, it is difficult to
apply to chiral CNs. In this paper, we obtain analytic expres-
sion for electric-dipole matrix elements for light polarized
perpendicular to the nanotube axis for CNs with arbitrary
chirality. This universal expression is reduced to even sim-
pler forms for the cases of zigzag and armchair CNs. We use
the obtained expression to investigate the short axis linear
susceptibility for CNs with arbitrary chirality semianalyti-
cally. Moreover, it could be used to study the linear and
nonlinear optical properties of SWCNs. The tight-binding
method has been used in our calculations to find the dipole
matrix elements for light polarized perpendicular to the
nanotube axis has included neither the exciton effect nor de-
polarization effect. Our aim is to find an analytic expression
for dipole matrix elements originating from all band to band
transitions for CNs with arbitrary chirality. Apparently, this is
only possible in the simple noninteracting case.

II. ENERGY DISPERSION RELATION
FOR CARBON NANOTUBES

The electronic properties of single walled carbon nano-
tubes �SWCNs� within the single-particle approximation are
often described by the tight-binding approximation.23–27 Tak-
ing into account the nearest neighbor interaction when com-
bined with a zone-folding approximation the tight-binding
model yields analytic expression for the electronic band
structure of CNs. Figure 1 shows the atom A at the origin and
its three nearest neighbor B atoms in the hexagonal lattice of
graphene along with the rotated coordinate system �X ,Y� in
the circumferential and axial directions, respectively.

To make a tube, the translational vector T� will be in the
direction of the nanotube axis and the chiral vector C� in the
circumferential direction. Hence, we consider the Y axis par-
allel to the translational vector and X axis in the circumfer-
ential direction in order that the wave numbers K1 and K2
provide the circumferential and axial components of the
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wave vector, respectively. We ignore the mixing of � and �
orbitals due to the curvature of the nanotube and thus con-
sider only � bands, as curvature effects are of minor impor-
tance for all but the smallest CNs. Following Ref. 27, the
nonzero Hamiltonian elements HBA�k��=HAB

� �k�� are given by

HAB�k�� = �0f�k�� ,

f�k�� = �
l=1

3

e−ik�·b� l
A

= e−ikxa/�3 + 2eikxa/�2�3� cos�kya/2� , �1�

where a=2.46 Å is the lattice constant of graphene,
�0�2.89 eV is the nearest neighbor overlap integral,
b� l

A �l=1,2 ,3� are the nearest-neighbor carbon atom vectors
from A to B sites,27 and

kx = K1 cos��� − K2 sin��� ,

ky = K1 sin��� + K2 cos��� , �2�

where �=� /6−cos−1��2n+m� / �2�n2+m2+nm��, where m
and n designate the chiral indices of the CN in the usual
notation.27 Hence, solving the 2�2 Hamiltonian matrix
equation, the energy eigenvalues are obtained as a function
of �, K1, and K2 given by

Ec,v�k�� = � �0�f�k��� , �3�

where

�f�k��� = �3 + 2 cos�kya� + 4 cos�kya/2�cos��3kxa/2� . �4�

For all arbitrary �n ,m� CNs the allowed wave vector compo-
nents K1

� in the circumferential direction are defined by

K1
�L = 2��, � = 0, . . . ,N − 1, �5a�

and

− �/T 	 K2 	 �/T . �5b�

Here, L is the length of the nanotube circumference and N
the number of hexagons in the nanotube unit cell. The cor-
responding normalized eigenvectors are

v�k�� = �CvA,CvB� =
1
�2

�− ei
v,1� ,

c�k�� = �CcA,CcB� =
1
�2

�ei
c,1� �6�

in which 
v,c, as the argument of the quantity
e−ikxb+2eikxb/2 cos��3bky /2�, is defined by


v,c = tan−1	 2 cos�kyb�3/2�sin�kxb/2� − sin�kxb�

2 cos�kyb�3/2�cos�kxb/2� + cos�kxb�

 . �7�

III. ELECTRIC DIPOLE VECTOR
FOR CARBON NANOTUBES

Denoting the valence bands by v and the conduction
bands by c, the electric-dipole vector between an initial va-
lence and a final conduction state is given by

d�ck��,vk� = − e��c�k��,r���r���v�k�,r��� . �8�

Here, e�0 is the elementary charge. As the functions
�v,c�k� ,r�� are the eigenfunctions of the unperturbed Hamil-
tonian operator, one can write

��c�k��,r���r���v�k�,r��� =
1

Ec�k��� − Ev�k��
��c�k��,r����Ĥ,r����v�k�,r��� ,

�9�

in which �Ĥ ,r��= Ĥr�−r�Ĥ. Expanding the eigenfunctions
�v,c�k� ,r�� by a linear combination of Bloch functions

s�k� ,r��= 1
�N

�l
Neik�·R� ls
�r�−R� ls�, where N is the number of unit

cells, 
�r�−R� � denotes the atomic �-electron wave function,
R� ls is the position vector for each l carbon atoms in the sth
unit cell, and introducing the completeness relation

�pq�
�r�−R� pq���
�r�−R� pq��=1 between Ĥ and r�, Eq. �9� can
be written

��c�k��,r���r���v�k�,r��� =
1

Ecv�k�� ,k��

1

N
�
ij

Cci
� �k���Cvj�k��

��
st

e−ik��·R� sieik�·R� tj

��R� tj − R� si��
�r���Ĥ�
�r� − �R� tj − R� si��� ,

�10�

where Ecv�k�� ,k��=Ec�k���−Ev�k�� and the expansion coeffi-
cients Cci�k�� and Cvj�k�� are the eigenstates of conduction and
valence bands. Here, we have changed the variable of

FIG. 1. �a� Unrolled positions of an A atom at the origin and its
three nearest neighbor B atoms. The angle between the bonds and
the chiral C� and translational T� vectors are also shown. The com-
ponents X and Y of the rotated coordinate system are chosen in the
direction of the circumferential and translational vectors, respec-
tively. �b� Rolled-up positions for an A atom at the origin �A0� and
its three nearest-neighbor B atoms.
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integration from r� to r��=r�−R� si and after that dropped the
prime on the dummy integration variable r�� for convenience.
Equation �10� is a general equation for any arbitrary unit cell
with any number of atoms. We will now apply this equation

to the substructure containing an A and B atom in the
graphene unit cell and then applying boundary conditions to
generate the corresponding result for CNs. Hence, consider-
ing only the three nearest-neighbor atoms, Eq. �10� is written

��c�k��,r���r���v�k�,r��� =
1

NEcv�k�� ,k��CcA
� �k���CvB�k���

st

e−ik��·R� sAeik�·R� tB�R� tB − R� sA��
�r���Ĥ�
�r� − �R� tB − R� sA���

+ CcB
� �k���CvA�k���

st

e−ik��·R� sBeik�·R� tA�R� tA − R� sB��
�r���Ĥ�
�r� − �R� tA − R� sB���� . �11�

Introducing R� tB=R� sA+b� l
A and R� tA=R� sB+b� l

B, where b� l
A and b� l

B �l=1,2 ,3� are the nearest-neighbor carbon atom vectors from A
to B and B to A sites, respectively, and �b� l

A�= �b� l
B�= �b� l�=aC−C=a /�3 is the bond length, one has

��c�k��,r���r���v�k�,r��� =
1

NEcv�k�� ,k��
CcA

� �k���CvB�k���
s

�
l=1

3

ei�k�−k���·R� sAeik�·b� l
A
b� l

A�
�r���Ĥ�
�r� − b� l
A��

+ CcB
� �k���CvA�k���

s
�
l=1

3

ei�k�−k���·R� sBeik�·b� l
B
b� l

B�
�r���Ĥ�
�r� − b� l
B��� . �12�

Introducing atomic dipole vectors v�A,B as:

v�A�k�� = − �
l=1

3

e−ik�·b� l
A
b� l

A, v�B�k�� = − �
l=1

3

e−ik�·b� l
B
b� l

B, �13�

and replacing b� l
A and b� l

B by −b� l
A and −b� l

B in Eq. �12�, respec-
tively, we obtain the general form of the electric dipole vec-
tor:

d�ck��,vk� =
− e�0

NEcv�k�� ,k��CcA
� �k���CvB�k���

s

ei�k�−k���·R� sAv�A�k��

+ CcB
� �k���CvA�k���

s

ei�k�−k���·R� sBv�B�k��� , �14�

where again �0= �
�r���Ĥ�
�r�+b� l
A,B�� for three nearest-

neighbor atoms. Equation �14� is in full agreement with Eq.
�8� in Ref. 14 where they have obtained the momentum ma-
trix element instead of the electric dipole matrix element. It
is mentioned that the second term of Eq. �14� is not the
complex conjugate of the first term. Equation �14� can be
used to find the dipole matrix elements for both parallel and
perpendicular polarizations in CNs. In the case of parallel
polarization, all A atoms in different cells have the same
component of the atomic dipole vector and similarly for all B
atoms. Hence, Eq. �14� is readily simplified for parallel
polarization.14,28 For the case of perpendicular polarization
one needs to consider the phase difference between atoms A
in different cells and B atoms as well. In this case, we have

obtained a closed form analytic expression for zigzag CNs.12

Using an expression similar to Eq. �14�, Jiang and co-
workers have presented a method to obtain the dipole vector
for armchair CNs14 for the case of perpendicular polarization
and have obtained an expression to linear order in �kx and
�ky. However, because the full structural symmetry of the
system has not been taken into account, their method is dif-
ficult to apply for arbitrary chiral CNs. Below, we derive an
analytic expression for the perpendicular case of the electric-
dipole vector for SWCNs with arbitrary chirality and its be-
havior for the important subclasses of zigzag and armchair
CNs is discussed. Subsequently we use this expression to
find the short-axis linear susceptibility for SWCNs.

IV. PERPENDICULAR POLARIZATION

Using Eq. �14�, the x component of the electric dipole
vector is given by

dck��,vk�
x =

− e�0

NEcv�k�� ,k��CcA
� �k���CvB�k���

s

ei�k�−k���·R� sAvx
A�k��

+ CcB
� �k���CvA�k���

s

ei�k�−k���·R� sBvx
B�k��� . �15�

In fact the cylindrical symmetry makes it more convenient to
work with right and left handed operators v+ and v−, respec-
tively, defined by v�=vx� ivy. For CNs with arbitrary inte-
gers �n ,m�, the x and y components of v�A and v�B for any
arbitrary A and B atoms based on a chosen A0 atom and its
three nearest neighbors as B0 atoms shown in Fig. 1�b� are
given by
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vx
A�� j� =

1

2
�ei�jv+

A0�k�� + e−i�jv−
A0�k��� ,

vy
A�� j� =

− i

2
�ei�jv+

A0�k�� − e−i�jv−
A0�k��� ,

vx
B�� j� =

− 1

2
�ei�jv+

B0�k�� + e−i�jv−
B0�k��� ,

vy
B�� j� =

i

2
�ei�jv+

B0�k�� − e−i�jv−
B0�k��� . �16�

Here, � j =2�j /N, �j=0,1 , . . . ,N−1� is the phase difference
between two A sites or two B sites respectively. Inserting Eq.
�16� into Eq. �15�, one obtains

dck��,vk�
x =

− e�0

2NEcv�k�� ,k��CcA
� �k���CvB�k���

s

ei�k�−k���·R� sAei�jv+
A0�k��

− CcB
� �k���CvA�k���

s

ei�k�−k���·R� sBei�jv+
B0�k��

+ CcA
� �k���CvB�k���

s

ei�k�−k���·R� sAe−i�jv−
A0�k��

− CcB
� �k���CvA�k���

s

ei�k�−k���·R� sBe−i�jv−
B0�k��� . �17�

Using the fact that ei�k�−k���·R� sA =ei�K� 2−K� �2�·R� sAei�2��−2����j/N and
simplifying Eq. �17�, one obtains

dck��,vk�
x =

− e�0�K� 2K� 2�

2Ecv�k�� ,k��
��CcA

� �k���CvB�k��v+
A0�k��

− CcB
� �k���CvA�k��v+

B0�k������=�+1

+ �CcA
� �k���CvB�k��v−

A0�k��

− CcB
� �k���CvA�k��v−

B0�k������=�−1� . �18a�

The y component of the electric dipole vector is obtained by
exploiting Eq. �14� once more and do the calculation in a
similar manner to that of the x component, hence,

dck��,vk�
y =

ie�0�K� 2K� 2�

2Ecv�k�� ,k��
��CcA

� �k���CvB�k��v+
A0�k��

− CcB
� �k���CvA�k��v+

B0�k������=�+1

− �CcA
� �k���CvB�k��v−

A0�k��

− CcB
� �k���CvA�k��v−

B0�k������=�−1� . �18b�

Comparing Eqs. �18a� and �18b�, the following relations be-
tween dck�,vk��

x and dck�,vk��
y are established. For ��=�+1 case,

dck�,vk��
y =−idck�,vk��

x and for ��=�−1 case, dck�,vk��
y = idck�,vk��

x . Fur-
thermore, these equations show that the transitions
E�

v �k�→E��1
c �k� are the allowed for the case of perpendicu-

lar polarization. These relations previously have been shown
for armchair CNs in Ref. 14.

The next and most important step is to find v�
A0 and v�

B0 for
SWCNs with arbitrary chirality. To this end, we have se-
lected a 3D coordinate system, Fig. 1�b�, where the z axis
normal to the plane indicates the nanotube axis and the x axis
is defined in such a way that it passes through an A atom,
called A0. We note that because of the full symmetry of the
system there is no priority for choosing A0 as a reference site
over the B0 site. When a graphene layer is rolled up around
the Y axis �translational vector� in Fig. 1�a�, the positions of
the three nearest-neighbor atoms is the same as shown in Fig.
1�b�. By fixing atom A0 on the x axis so that xA0

=R and
yA0

=0, where R is the radius of the nanotube, one can easily

find the components of the vectors b� l
A0 and b� l

B0, given by

bix
A0 = R cos��i� − R, i = 1,2,3,

b1y
A0 = R sin��1�, b2y

A0 = − R sin��2�, b3y
A0 = − R sin��3� ,

bix
B0 = − bix

A0, biy
B0 = − biy

A0. �19�

Here, the associated angles of the three nearest neighbor at-
oms are given by

�1 =
SA0B1

R
=

��n + m�
n2 + m2 + nm

,

�2 =
SA0B2

R
=

�m

n2 + m2 + nm
,

�3 =
SA0B3

R
=

�n

n2 + m2 + nm
. �20�

Inserting Eqs. �19� into the Eq. �13� the x and y components
of the atomic dipole vectors v�A0,B0�k�� are given by

vx
A0�k�� = − �

l=1

3

e−ik�·b� l
A0

blx
A0

= − R�e−ikxb�cos��1� − 1� + eikxb/2−ikyb�3/2�cos��2� − 1�

+ eikxb/2+ikyb�3/2�cos��3� − 1�� ,

vy
A0�k�� = − �

l=1

3

e−ik�·b� l
A0

bly
A0

= R�− e−ikxb sin��1� + eikxb/2−ikyb�3/2 sin��2�

+ eikxb/2+ikyb�3/2 sin��3�� ,

vx
B0�k�� = − vx

A0��k��, vy
B0�k�� = − vy

A0��k�� . �21�

Using the relation v�
A0 = �vx

A0 � ivy
A0� one has

v�
A0 = R�e−ikxb�1 − e�i�1� + eikxb/2−ikyb�3/2�1 − e�i�2�

+ eikxb/2+ikyb�3/2�1 − e�i�3�� . �22a�

As mentioned, exploiting the full symmetric of the system
one can easily obtain the expressions for v�

B0
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v�
B0 = − v�

A0�

= − R�eikxb�1 − e�i�1� + e−ikxb/2+ikyb�3/2�1 − e�i�2�

+ e−ikxb/2−ikyb�3/2�1 − e�i�3�� . �22b�

For simplicity we write v�
A0 =−v�

B0�= �v�
A0�ei
�, in which 
�,

as the argument of the v�
A0, is given by 
�=arctan�X� /Y��,

where

X� = − sin�b1��1 − cos��1�� � sin��1�cos�b1�

+ �
i=2

3

�sin�bi��1 − cos��i�� � sin��i�cos�bi��

Y� = �
i=1

3

�cos�bi��1 − cos��i�� � sin��i�sin�bi�� . �23�

Using the eigenvector equations Eq. �6� and atomic dipole
vector Eq. �22b� and inserting into Eq. �18a� and �18b� we
obtain closed form expressions for the x and subsequently y
components of the electric-dipole matrix elements, given by

�dck��,vk�
x � = �dck��,vk�

y �

=
e�0�v�

A0��K� 2K� 2�

2Ecv�k�� ,k��

� �sin�2
��k�� − 
c�k�� � − 
v�k��
2

�����=��1.

�24�

Equation �24� is the main result of this paper. It gives the
absolute value of the electric dipole matrix elements for ar-
bitrary �n ,m� SWCNs as a function of wave vector and chi-
ral angle. The equation indicates that for perpendicular po-
larization, electric transitions are allowed between valance
and conduction states with the same 1D wave vector ��K� 2K� 2�

�
but different energy subband indices � and �� differing by
�1.

Applying values �=� /6, �1=�3= �
n , �2=0, kx= �K1

�3 /2
−K2 /2�, and ky = �K1 /2+K2

�3 /2� for zigzag CNs, one
simply obtains v�

A0 =2 ReibK2/2 Re��1−e�i�/n�e−ib�K1�3�/2� and
2
��k��=bK2=aK2 /�3. Therefore, for zigzag CNs, we
obtain �v�

A0�=2R�Re��1−e�i�/n�e−ib�K1�3�/2�=2R�cos��� /n�
−cos���� /n��. Using these expressions, Eq. �24� is found to
be in a full agreement with our previous work.12 The expres-
sion for �v�

A0� is k independent for zigzag CNs but depends on
k for armchair and chiral CNs. We plot the absolute value of
the momentum matrix element py = �me /�e�Ecv�k�� ,k���dck��vk�

y �
for the important transitions near the band gap of a �8, 8� CN
in Fig. 2. According to the energy dispersion relation, one
can easily see that transitions from valence to conduction
bands �v→c� denoted by 9→10 and 6→7 are equal and this
is also the case for the transitions 8→9, 7→8 and 5→6,
10→11. Therefore, each group of the transitions has exactly
the same value of the momentum matrix element as shown in
the plot. These bands are separated only in the presence of a
constant magnetic field. Our plot in Fig. 2 for armchair CNs
basically is similar to that of Fig. 6 in Ref. 14. However
looking carefully at Fig. 6 in Ref. 14 it is seen that allowed
degenerate transitions have created different matrix ele-
ments. For example degenerate transitions such as 10→11,
9→10 have led to different matrix elements, which would
not be the case if the full symmetry were exploited. Other
degenerate transitions such as 11→12, 8→9, and 12→13,
7→8 also have produced different matrix elements.

We note that the matrix elements obtained in Ref. 14 can-
not give a correct result for obtaining optical properties of
CNs e.g., linear susceptibility. By using the same method for
chiral CNs it clearly breaks the symmetry of the system. In
fact, the definition of nearest-neighbor atoms is not consis-
tent with Eq. �7� in that paper. To make clear the symmetry
of our calculation we plot the absolute value of the momen-

FIG. 2. k dependence of �py� for a �8, 8� CN for some allowed
transitions. Transitions are labeled with respect to the quantum
numbers introduced in Eq. �5a�.

FIG. 3. k dependence of �py� for �4, 2� CN for all allowed
transitions.
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tum matrix element for chiral CNs, e.g., �4, 2� CN in Fig. 3.
The plot shows the full symmetrical behavior of the system
in the first Brillouin zone and moreover enables us to study
the momentum vector including all transition bands even in
complicated chiral CNs. Using Eq. �24�, one is able to reduce
huge amount of numerical calculations and obtain the optical
properties of CNs semianalytically. In the following, we use
Eq. �24� to obtain the short axis linear susceptibility for ar-
bitrary �n ,m� SWCNs.

V. SHORT AXIS LINEAR SUSCEPTIBILITY

Using the diagonal components of the linear susceptibility
given by12

�ii��� =
2

��0A
�
c,v
�

−�/T

�/T

�dc,v
i �k���2

Ecv�k�dk

Ecv
2 �k� − �2�2 , �25�

the y component of the short axis linear susceptibility is
given by

�yy��� =
e2�0

2

��0A
�K2K2� �

�,��=0

N−1

���=��1�
0

�/T

�v�
A0�2

�sin�2
��k�� − 
c�k�� � − 
v�k��
2

�2

�
dK2

Ecv�k��Ecv
2 �k� − �2�2�

. �26�

Due to the complicated k� dependence of the sin term as well
as the transition energies, no analytic solution has been found
for this integral. In the form given above, however, the inte-
gral is easily computed numerically. The importance of
knowing the absorption spectra from isolated SWCNs for
both parallel and perpendicular polarization has been pointed
out in a resonance Raman studies of SWCNs.29 They showed
that resonance Raman scattering from cross polarized light
involving the E�,��1 van Hove singularities in the joint den-

FIG. 4. �a� The imaginary ��yy� � and �b� real ��yy� � parts of the susceptibility of some SWCNs for parallel �Para� and perpendicular �Per�
polarization.
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sity of states also needs to be taken into account when ana-
lyzing Raman spectra from isolated SWCNs.

To show the polarization-dependent optical properties of
CNs we plot �yy for both real and imaginary parts of some
CNs �4, 2�, �7, 3�, and �5, 5� in Fig. 4. The peaks for parallel
polarization originate from minima and maxima of occupied
and unoccupied bands with the same energy subband indices.
However, those for perpendicular polarization originate from
minima and maxima of occupied and unoccupied bands with
different energy subband indices. It is seen that the resonance
energy positions are different for different polarization direc-
tions and moreover in the perpendicular case the susceptibil-
ity is made up of a broad hump in agreement with our pre-
vious work.28 It should be mentioned that we do not consider
the depolarization effect.30–33 It is also noted that for both
cases the intraband transitions have not been taken into ac-
count. Hence, for metallic CNs in the case of perpendicular
polarizations a resonance peak appears at lower energy than

that of the parallel polarization. This peak is created by the
transitions originating from valence band lower than the
band crosses the Fermi level to the conduction band which
passes through the Fermi level. If intraband transitions are
taken into account there will be a high-resonance peak at
very low energy for the case of parallel polarization.

VI. CONCLUSION

Using the tight-binding approximation we have calculated
the optical matrix elements of single wall carbon nanotubes
with arbitrary chirality for linearly polarized light with po-
larization perpendicular to the nanotube axis. The significant
k dependence of dipole matrix elements means their inclu-
sion cannot be ignored in accurate calculations of the optical
response. Moreover, we have studied the short axis linear
susceptibility semianalytically.
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